Stats Teacher Drives Engagement with Authentic Data

Relevance Prompts Annie Pettit’s Students to Dive Deeper  

Teacher Annie Petit

Annie Pettit has taught a variety of different high school math courses during her 18-year career, but her self-professed passion is statistics. She gravitates toward stats because it provides multiple opportunities to use real-world data. 

“As much as possible, I try to get data that relates to the kids, data they are excited about or that they can relate to,” Pettit said.

histogram comparing points scored/season by Kobe Bryant, LeBron James and Michael Jordan
Engagement is high when the data is relevant to kids, such as the NBA statistics this student analyzed to determine the GOAT (greatest of all time).

Pettit designs her statistics course at Des Moines Christian School so that assignments earlier in the year are more supported. First, she acquaints students with the Tuva graphing tools using a premade Tuva activity with step-by-step directions. Then, she assigns a simple comparison project in which students can use these tools to create dot plots and box plots about data that’s personally meaningful. Students select a topic independently. DC Comics vs Marvel Comics profits, passing yards from last season’s football season, viewership for The Office vs. Friends, the US women’s national team vs the men’s national team – the topics are as varied as Pettit’s students.

Pettit continues to  ratchet up the rigor throughout the year, so that by quarter four students are ready to “do stats like a statistician does” using large datasets and lots of variables.

“If you put data in front of them that interests them… they actually want to find out the answer instead of doing it to get it done.”

Last year she gave her statistics students five options of datasets to choose from for their final project: electric cars, basketball statistics, baseball statistics, state crime rates or movie production budgets. Pettit noted that real-world data motivates students at all different levels – those to whom math comes easily, and those who have to work a bit harder to master statistical concepts.

“If you put data in front of them that interests them or if they get to pick their own data, they actually want to find out the answer instead of doing it to get it done.”

A few graphs from one student’s final project about electric car performance.

The depth and insight shown in her students’ work is a testament to their level of engagement. For example, a student investigating electric car performance reflected that statistical analysis often challenges our assumptions, and variables that seem like they would be correlated don’t correlate at all.

Pettit prefers to have students analyze these authentic datasets in Tuva where they can focus on justifying their conclusions instead of on the logistics of making the graphs.

“Tuva makes statistics come alive!” Pettit said. “Tuva allows my students to be statisticians. They are able to analyze big datasets and draw conclusions from data they find relevant to their lives.”

Accentuating the Power of Shared Data

California Teacher Spiri Bavelas Trains her Students to Know Their Way Around Messy Data

Working with data becomes second nature to students in Spiri Bavelas’ science classroom. Whenever they are completing an experiment in her class, students collect their own data and put it into a shared, class-wide spreadsheet. Then, Bavelas uploads the data into Tuva where students can manipulate and explore it. When Bavelas uses larger, messy datasets, she’s drawing from her years as a research assistant before she began teaching.

“You never are going to look at just five numbers in the real science world.”

“When I started, students collected four or five numbers and were supposed to come up with a big conclusion, but you never are going to look at just five numbers in the real science world,” she said. 

Bavelas has worked in a handful of different schools throughout California, but recently took a position at R. Roger Rowe Middle School in Rancho Santa Fe. Wherever she has been, Bavelas has engaged her students with large data sets. 

One of the lessons she hopes to impart to her students is that people can use data to make better decisions. Bavelas used a popular mining simulation to illustrate this concept during an environmental resources unit. Students placed cookies on grid paper and mined the chocolate chips, keeping track of expenses and income. Afterward, she instructed them to measure damage to the environment based on the number of grid squares where crumbs landed. By analyzing all of the data pooled from Bavelas’ classes, students gained insights into which mining strategies caused minimal harm, enabling them to develop new, environmentally-friendly, yet still profitable, methods of extraction.

Bavelas’ students use Tuva to generate graphs that include data from all of their classmates.

Bavelas also showcased the utility of collective data during an annual egg drop competition at one of her former schools. Engineering teams were awarded points for landing crafts that had a slow descent, hit the target, and kept the egg safe. Bavelas had been collecting egg drop data over multiple years. Students used the data from prior years to inform their design decisions. For example, the data revealed that a light lander is advantageous, but only up to a point. If the device is too light, it drifts off target.

“Data analysis is not just something you can do in one class,” Bavelas said. “Data can be a thing on a larger scale where you can collaborate with people that are not right next to you.”

Bavelas also wants her students to be aware that data displays can be manipulated to suggest certain conclusions. For example, she explained, if you look at a bar graph and zoom in on the differences it might look like the more massive car travels down a ramp faster. However, when you look at it on a larger scale, the difference is tiny, and calculations reveal there is no statistical correlation between mass and speed.

Whether it’s understanding the importance of sample size, utilizing data to make good choices, or being savvy enough to detect deceit, Bavelas hopes the lessons students learn in her science class will serve them well in whatever path they choose.

“I want the skills students obtain in science class to be a vehicle for better understanding and functioning in the entire world.”

Starting the Year with Data Literacy

Science Teacher Margo Murphy Does Science From Day One

When most people think “back to school,” it conjures images of students seated at a desk, their heads bent over their computers and papers. In Margo Murphy’s Earth Systems Science classroom, though, “back to school” has a different meaning.  Murphy jumps right into doing science. That means the first days back find her students outside in their Rockport, Maine schoolyard collecting data.

At first, the content of the investigation doesn’t matter; what matters is if observational data can be gathered to answer the question. Each group picks a question that sparks their interest.  For logistical purposes, Murphy limits them questions they can answer on campus. For example, one group of students might be measuring the length of white pine needles to see how variable they are while another is documenting the brands, models and colors of vehicles in the school parking lot. The purpose?

“It gives kids the idea that you can have highly variable data but still see trends,” Murphy explained. This is fundamental in her Earth Systems course, she elaborated. “You are going to have messy data if you are going to work in the earth sciences.” Murphy and her Earth Systems colleagues at Camden Hills Regional High School consider data literacy so essential to the earth sciences that they devote a significant portion of the first quarter helping their students master it. 

They don’t have to focus on getting it ‘right’ the first time, so they can iterate.”

Once students have collected data, they upload their data on Tuva and begin to explore it. Murphy’s students always enjoy the “playground aspect” of Tuva, being able to bring data in and look at it in a variety of ways. To capitalize on this engagement, Murphy builds in time for her students to “play”. 

“[With Tuva] they don’t have to focus on getting it ‘right’ the first time, so they can iterate,” Murphy said. 

Murphy scaffolds learning using Tuva’s graph choice chart.

As students are becoming conversant with analyzing complex data, Murphy scaffolds the learning process using Tuva resources like the graph choice chart

The time and energy devoted to data literacy pays dividends later in her course as students grapple with complex earth systems core ideas such as weather and climate, topics which Murphy considers vitally important.    

Two scatter plot graphs showing a strong correlation between CFC levels and ozone hole area.
Murphy introduces data skills early, preparing students to apply them to projects like this one later in the course.

“I want kids to understand that there is change on the planet, that this change is rapid, and how they can find evidence and understand that evidence to understand these changes and ask good questions.”

Special Lessons for Odd Times

The weeks between Thanksgiving and Winter Break are a challenging time to keep-up student interest and maintain an orderly classroom. I like to take the time to do longer-term in-class projects. It makes these trying weeks special and gives kids an incentive to stay emotionally present in school.

It’s a great time of year to use Tuva regularly. These few weeks are ideal for  mini-research projects or statistics based units. You have three weeks for students to dive deeply into various topics, write papers and create presentations. When students are driving their own learning the struggle to keep them engaged dissipates.

Tuva’s new tools allow you to do this with minimal work on your part.  We’ve found the data for you. Now you just have to write the questions and get computers into the hands of your kiddies.

If you don’t see a topic you want your students to explore please fill out a dataset request and we will put it together for you as soon as possible.

Beyond the Paper-Hand Turkey

I love the time honored tradition of the Paper-Hand Turkey as much as the next guy (though I’m not sure how much that actually is) but making paper turkeys in and of themselves doesn’t add much value to the lives of students.

Holidays have real histories and real economic ramifications. When planning lessons about Thanksgiving, especially in the age of Backward Design, Purposeful Play and Common Core, we should make sure the goals of our lessons matter.

To help you plan, we’ve composed three ways to teach about Thanksgiving using real world data and that cover meaningful topics.

1. The History

The real story of Thanksgiving is significantly more interesting than the myths and should be part of the American narrative. The Mayflower actually had two types of travelers. Pilgrims moving to the New World to have space to practice their religion in peace and entrepreneurs coming to the New World hoping to make a living.

Use Tuva Labs datasets to explore who was on the Mayflower. Examine the numbers of Pilgrims in relation to everyone else. Look at the numbers of men and women. And discuss the social ramifications behind this combination of travelers. Examine who lived and who died.  Ask students to find the correlation between social status and survival.  Explore who signed the Mayflower Compact and what that tells us about our roots as a democracy.

Check out the legacy. Examine how many people in the U.S. today can trace their roots back to the Mayflower. 

Students can examine the numbers of Native Americans living in New England and their swift and sad decline compared to 1620.  This activity can be a cornerstone of your curriculum because it’s a truth you must return to when teaching American History.

2. The Economics of the Thanksgiving Table

Let your students explore the Tuva Labs data set about how much people spend on the holiday and examine if it is worth the expense and why. Explore if dinner has become cheaper or more expensive as the holiday evolves.

3. The Economics of Black Friday

Black Friday is a phenomenon that fascinates my students. Thier conversations vacillate between disbelief coupled with disgust and how much they really do want the new X-Box. A great exercise is to examine how good the savings actually are.  Add the savings to it the opportunity cost of waiting in line, giving up Thanksgiving, being cold and uncomfortable and you know, possibly getting trampled by other crazed shoppers.  Decide if and when braving the black Friday sales are worth it.

Our Black Friday dataset allows you to examine how many people participate, how much they spend and how those numbers have changed over time. Pose the questions, what direction are we going as a society based on that data? Can we make conclusions based on this?


The history and economics of holidays are always great ways to provide important lessons on played out topics. Not that I don’t love the art of the Paper-Hand Turkey, but there is more to Thanksgiving than that.