Engaging Students with Data That Hits Close to Home

View from the Classroom

In 2023, Minnesota saw an unprecedented 22 air quality alerts in just 52 days. And for one day in mid-May 2024, St. Paul held the unenviable position of worst air quality in the United States.

6th-Grade Teacher Emily Harer

6th-grade Earth Science Teacher Emily Harer saw potential for authentic science learning in the unfortunate air quality downturn. Air quality issues are a suitably complex issue. Since the publication of the Next Generation Science Standards in 2013, major emphasis has been placed on anchoring science learning in complex phenomena. Even better, it was a phenomenon her students could immediately relate to.

“National curriculum is often focused on things that aren’t local,” she explained. “Having local phenomena is extremely important for students to latch onto.” 

Harer, who teaches at Global Arts Plus Upper School in St. Paul, said she wants students to know that science is all around them and that they can contribute to the body of science knowledge through research and data collection. That’s much easier to do if the phenomenon they’re studying is local and relevant.

Putting Local Data into Students’ Hands

During the 2023-24 school year, Harer engaged her students in a month-long air quality unit. Throughout the unit, Harer had her students investigate the myriad factors contributing to air quality. Using historical weather and air pollution data from the National Weather Service and the Environmental Protection Agency, Harer created datasets using all local data. Then she uploaded them into Tuva and embedded them into the lessons on her class website

Harer’s students can use Tuva tools to manipulate the data right on her class website because she has embedded the datasets on it.

“It was exciting to see students think about experimental setup, drag and drop the attributes, to then find answers to their questions,” said Harer. 

Hosting the data in Tuva allowed her students to more easily interact with it and to look for relationships between particulate matter and other variables such as wildfires, rainfall, seasons, and land cover.

Students were able to manipulate the data to determine when wildfire smoke was in the air in Ramsey County in 2023. They saw the daily changes in particulate matter through time and could point directly to when the wildfire happened. 

A student uses Tuva to explore the variables that impact St. Paul’s air quality.

The complexity of the phenomenon prompted students to generate new questions as they encountered unexpected findings. For example, when they compared ozone and temperature data in Ramsey County to Voyageurs National Park to the north, they realized that their prediction was actually opposite to what the data showed. Voyageurs National Park had substantially more ozone than Ramsey County in the spring.  This cognitive dissonance spurred further inquiry and research. 

Outcomes: Engagement and Deep Understanding

The combination of real-world, local data and Tuva tools is one Harer plans to repeat for two reasons: engagement and depth of understanding. 

“I don’t usually see people getting that jacked about graphs,” admitted Harer. 

Memorable student reactions when playing with the data on Tuva included:  “Oh wow! Oh my gosh, I just did that!”, “Whoa! The rain washed that particulate matter out!!” and, “Dang! This is really life… in St. Paul.” 

Engagement drove learning. By the end of the unit, students really understood particles in the air and were asking deep questions about weather, topography, vegetation, and air quality – startling high-quality questions. Jason Johnson, chief engineer at TSI Inc., a Minnesota-based company that designs and engineers air monitors for scientific research, visited the class near the end of the unit. During his visit, he projected a graph from his graduate program and was surprised at the students’ insightful observations and questions. 

“They are 6th-graders, and they understand this so deeply!” he told Harer.

The graph Jason Johnson shared with Harer’s 6th-graders during his classroom visit, from “Engines and nanoparticles: a review” David B. Kittelson Journal of Aerosol Science. Volume 29, Issues 5–6, 1 June 1998, Pages 575-588

Taking it Even Further

This year, Harer plans to expand the project to include data collected by instruments on the roof of the school buildings. The campus has a weather station. Last year, Harer was able to use grant funding from the National STEM Scholar Program to purchase and install a BlueSky air quality monitor as well. By the time her Air Quality Unit rolls around, she will have a full year of data from these instruments. She anticipates that her hyper-local weather and air quality data will be even more engaging for her students and will help them understand how science fits into their lives.

Emily Harer poses beside the school’s new BlueSky air monitor with Dr. Lucy Rose from the University of Minnesota Department of Forestry Resources. Rose assisted with the project.

“I see science everywhere. When kids do too, that is so exciting” she said. “I want kids to see how cool Minnesota is and that we have a lot to offer here.”

Incorporate Local Data into Your Lessons

Uploading data into Tuva and sharing it with your students is simple. Here are the steps and, in case you need help, links to our associated support pages.

  1. Find data and, if it is not already, put it into a spreadsheet.
  2. Upload the data on Tuva.
  3. Share the dataset by assigning it to your class or embedding it onto your website.

Elementary Educator Gives All of Her Students Sugar Cubes

…and deeper learning ensues

sugar cubes

On the surface, giving 5th-graders sugar cubes seems like a terrible idea. But BJ Barrie, a math and science teacher at Euper Lane Elementary School in Fort Smith, Arkansas had her reasons. Chief among them was Barrie’s goal to help students realize they’re capable of making sense of the world on their own.

Barrie was in the midst of a unit on matter. She’d challenged her students to investigate how temperature affects solubility (hence the sugar cubes). Instead of giving the students step-by-step instructions for carrying out the experiment, she left it open-ended, giving them occasional prompts to keep them thinking as they figured out what would work on their own.

The Challenges of Doing Science in Elementary School

At the beginning of the year, Barrie’s students often asked her to explain why things happened, expecting that they’d just be told. They didn’t trust themselves to figure out the phenomenon; they didn’t know the steps to take to do so. Barrie says this insecurity likely resulted from limited exposure to hands-on science.

“Some of the early elementary teachers have not had the time to hone in on science as much as they would like to,” explained Barrie.

They’re not alone. A 2021 report from the National Academies of Science, Engineering and Medicine revealed the average elementary student spends less than 20 minutes per day on science.

Science and social studies are often squeezed out of the elementary curriculum due to time pressures from other subjects. Increasingly rigorous and frequent standardized testing in English language arts and mathematics results in these subjects being prioritized.

Some school systems attempt to address the dearth of science instructional time by having students read non-fiction texts about science during their literacy block. Passive methods of relaying content information, like reading and watching videos, fall short of teaching students science practices, however.

“Why Do You Think That Happened?”

Barrie’s goal is to graduate 5th-graders who know how to apply the science practices to make sense of phenomena on their own. Hence her mantra: “Why do you think that happened?” This short phrase both turns her students’ attention back to the investigative process and imparts her trust in their ability to figure it out. 

BJ Barrie
BJ Barrie, 5th-grade teacher

“With hands-on experiments, students directly observe phenomena and manipulate variables,” explained Barre. “They develop a deeper understanding of scientific principles by seeing how theories apply in real-world situations.”

Data plays a key role in helping Barrie’s students generate claims in response to her oft-asked question, “Why do you think that happened?” When no one is giving them the “answer”, they need to turn to the data to find out what might be going on. (Ahem- sort of like professional scientists do.)

For example, during the sugar cube experiment, there were three people who dissolved the cube in less than a minute. Barrie encouraged her students to look closely at the class-wide data. What was the difference?

Tuva Jr. Helps Elementary Students Make Sense of Their Data

When sensemaking happens through hands-on experimentation, students must be equipped with the skills necessary to interpret and analyze the resultant data. Like other skills, data literacy must be taught. In Barrie’s classroom, students have built up these data literacy muscles using Tuva Jr., Tuva’s new program designed for kids in grades 3-5. Barrie participated in the Tuva Jr. pilot program earlier this school year and has been a regular user since.

Barrie said she loves Tuva Jr. because “students not only learn data analysis but also discover the power of curiosity and critical thinking.”

Barrie said the playful nature of the Tuva Jr. tools appeals to her students. Like Tuva, the graphing interface uses interactive drag-and-drop technology, making it easy for students to choose which attributes (variables) they want to explore. Students can also choose from a menu of graph types. These are our tried and trusted features that place students in the driver’s seat in a way that can’t happen with static data tables and graphs. 

But Tuva Jr. also has unique features. It opens in “Play View” where each case is represented by a playing card, and when users switch to the “Plot View” the data points retain a playful shape, such as that of a football or a koala. Additionally, to prevent overwhelming younger students, the toolbar is simplified and the overall number of attributes and cases is smaller. 

Relevance is another strong suit of Tuva Jr., according to Barrie.

“I like how Tuva has content about different things that would be interesting to my students,” said Barrie.

So far, her kids’ favorite Tuva Jr. activities include Comparing Candy and Beach Cleanup. While the candy-themed activity was a fan favorite for obvious reasons, the litter dataset prompted their intellectual curiosity. Knowing that this data was real deepened the conversation. Beach Cleanup launched a wide-ranging discussion about what is considered junk, how certain items could have found their way to the beach, and how plastic never really goes away. Barrie’s students were surprised by how much junk was found on the beach and were inspired to think of strategies for preventing plastic waste that can be carried by wind or water to the water’s edge.

The Case for Giving 10-Year-Olds Sugar Cubes

Our world is a complex place. There’s an unspeakable complexity in nature- in the structure of a glucose molecule or in the creation of a cumulus cloud, for example. And there’s immense complexity in the world’s latest problems, like garbage islands and nanoplastic pollution. When our kids are all grown up and tackling their own generation’s conundrums, they’ll need to ask themselves, “Why do we think that happened?”,  and they’ll need to have the capability to gather and analyze data to help them get closer to the answer. That capacity does not just suddenly emerge at a certain age; it has to be built up gradually.

While the potential short-term consequences of giving a room full of 5th-graders sugar cubes loom large, the consequences of not entrusting them with decision-making power while we still have the opportunity to nurture and direct those powers is far greater. BJ Barrie has the long game in mind.

“Why are we learning this?”

Utah Teacher Macy Cook Is Ready With an Answer

Picture of Macy Cook

Macy Cook is a 6th-grade teacher in Salt Lake City, Utah. Her self-contained classroom at Uintah Elementary School houses 28 11- and 12-year-olds. Like many students on the cusp of adolescence, Cook’s pupils are beginning to chafe at authority and to question the requirements adults place upon them. They want to know, “Why are we learning this?” 

Cook doesn’t believe it’s a snarky question, but rather a valid query that deserves a serious response. She vividly recalls hating it when teachers responded, “Because I said so,” and she’s determined to reply thoughtfully when her own students wonder about the importance of a particular concept.

“I want everything to have a reason,” she said. “I want them to know where it will show up in their life, so it has purpose.”  

Purpose and Application – A Quick Snapshot of the Research

Cook’s educational philosophy aligns well with national efforts to improve science education and is backed by a substantial body of research. One of the major principles of The Framework for K-12 Science Education is  Connecting to Students’ Interests and Experiences.

“In order for students to develop a sustained attraction to science and for them to appreciate the many ways in which it is pertinent to their daily lives, classroom learning experiences in science need to connect with their own interests and experiences.” – The Framework for K-12 Science Education

Multiple studies indicate lack of purpose hinders STEM learning. Interventions that emphasize the utility of science improve outcomes and persistence, particularly for historically underrepresented students. Practitioners have shown when students apply science, such as when they participate in citizen science, it can enhance motivation, interest, knowledge, and communication skills. 

Tuva Helps Contextualize Science

Cook was introduced to Tuva this winter when she participated in a professional development series hosted by the Salt Lake City School District and led by Tuva instructional specialists. Cook quickly became a fan and has been frequently using Tuva with her students.

“Tuva has been really amazing for them to see the real-world application of the topics they’ve learned,” said Cook.

Tuva’s Content Library includes 400 curated, real-world datasets and more than 450 applied math and science lessons based on them, which makes connecting to the world outside of the classroom easy.

Recently, Cook’s students have been studying atomic chemistry. Cook said it is hard for sixth graders to wrap their heads around the concept that elements make up molecules and molecules make up everything on Earth. 

Cook used Tuva’s Nature of the Elements activity to help her kids grasp the importance of elements.

Tuva’s lesson, Introduction: The Nature of Elements, intentionally pointed out the relevance. One question prompted students to complete the sentence, “A few elements that are important to me are…” Cook expanded the question to include, “What elements do you recognize?” Within moments, students were calling across the room as they encountered familiar terms. “Aluminum- like in aluminum foil.” “Neon signs.” “Oxygen!” “We use chlorine in our pool.”

Understanding the elements’ ubiquity gave purpose to the ensuing exercise. Exploring the trends in the periodic table was transformed from something abstract to something intimately connected to their daily lives.

Another Answer to “Why?’

When Cook was in 6th grade, her math teacher’s response to, “Why?” was, “You are not going to always have a calculator in your back pocket.” Flash forward 20-odd years- Cook grins at me through the Zoom screen and waggles her cell phone. (Psyche!) 

Technology has and will continue to evolve rapidly. Cook predicts our rapidly changing world will require today’s students to have stronger data literacy skills. 

“The future of what the kids are going to do is probably going to be computer-based, so learning how to manipulate and read data is really important. Even if it’s not something the average adult does now, it will be.” 

Experts agree. Harvard Data Science Review estimated there will be more than 150,000 U.S. job openings requiring data analysis skills by 2025. The U.S. Bureau of Labor Statistics reports higher-than-average job growth in data-related careers by 2032. Graduates with strong data skills will have an advantage, not only in data science but also in diverse fields such as agriculture and real estate that increasingly rely on data.

What’s Obvious to Us, Isn’t to Them

The reasons for providing a rigorous education in science and data literacy are obvious to adults. Not so for kids. Cook’s intentional focus on purpose and application, combined with the baked-in relevance of real-world data, ensures that her students are never left wondering, “Why am I Iearning this?”

HS Junior Melds Stats With Civics to Gain Insights into Infant Mortality

View from the Classroom

Data Crosses Disciplines, Yields Powerful Learning

Up until the mid-1800s, children had a 50% chance of dying before age 15. By 1950 the childhood mortality rate was closer to 25%. Today, it sits at 4.3% globally. Childhood mortality rates have experienced a steep, steady decline across the world.

So, when Kate Harrison, a high school junior in Charlotte, North Carolina, was sifting through data about infant mortality rates in different countries, Syria’s data gave her pause.

“Syria in particular has these two spikes, and I got really interested, thinking, what was happening at the time?” she said.

Thus was born a semester-long investigation.

Data Transcends Disciplinary Boundaries, Deepens Learning

Harrison was enrolled in an honors statistics class at Fusion Academy where she’d been charged with undertaking an interdisciplinary project. She’d decided to apply statistics to explore history, but identifying a focus took time.

Her original idea was a bit nebulous, but it centered around trends in warfare over time. To clarify her question, she began exploring data. In the process, she stumbled upon the Syrian infant mortality data. That’s when nuanced and intriguing questions pushed their way to the forefront.

Harrison immediately noted an association between the timing of armed conflicts in Syria and the spikes in infant deaths. She noticed that after the start of the Islamist uprising in Syria in 1981, infant mortality increased by 4.24%. The nation suffered an even more drastic 52.7% increase in the infant mortality rate from 2010-2014 at the beginning of the Syrian Civil War.

Harrison discovered that in both instances there had been a concurrent rise in overall mortality. However, she knew that infants didn’t fight in the wars, so what were the underlying connections? Harris worked with her faculty advisors, social studies teacher Rick Fera and statistics teacher Chad Boger, to brainstorm variables that may have influenced infant mortality. 

Variables she explored included birth rates, governmental regimes, international aid, gross domestic product, basic sanitation, basic healthcare access, and vaccination rates.  She compiled data about these factors from Our World in Data and the World Health Organization and imported it into Tuva for analysis. Harrison said identifying changes and interpreting patterns was easier for her when she used Tuva.

“You really just can’t tell using a table because there’s so many numbers and so many different data points,” she said. “And so getting to put that all into one tool and really visualize it without having to go through the hassle of actually plotting out each point, and probably doing something wrong, was very helpful.”

Surprises in the Data

In some cases, Harrison was surprised at the lack of correlation between variables. She had assumed, for example, that GDP would have a large impact on infant mortality rates, but the data did not show a correlation. In fact, Syria experienced a financial crisis a few years before the civil war, but the infant death rate did not experience a resultant increase.

What did show a correlation with infant mortality – vaccination rates. In the early 1980s, Syria engaged in a national immunization campaign, and infant mortality rates showed a steep decline. However, when immunization rates faltered during the civil war and uprising, infant mortality spiked again. 

Using Data to Inform Priorities in War-Torn Nations

“This data suggests that immunization programs and keeping healthcare systems intact should be a high priority in war-torn nations,” Harrison concluded. “Several relief programs are focusing on integrated management of childhood illnesses, which includes improving case management strategies of healthcare providers, healthcare systems, and families.” 

Boger, Harrison’s teacher, applauded her work, saying she’d exceeded his high expectations. This spring, Harrison will have another chance to explore her passions with a civics math class she’s enrolled in.

“I personally see data as the backbone of any social change.”

She is also beginning to think about life after high school. She’s begun exploring four-year colleges and aspires to pursue degrees in political and environmental sciences. 

“I personally see data as the backbone of any social change,” said Harrison. “Being able to visualize and look at data clearly is essential to taking meaningful action and maximizing your impact. I see this, especially with environmental justice and climate change. Data will help determine which areas are most in need of relief and which areas will face the most impact. I hope to be able to focus on data-driven environmental policy work in the future.”  

Inspired? Explore Data You’re Passionate About
  1. Find data that sparks your curiosity.
  2. Click “Upload Dataset” from your Tuva dashboard or type tuvalabs.com/upload in your web browser’s URL bar.

3. You may now import a dataset from your computer, Google Drive, or One Drive, or by dragging and dropping your CSV, XLS, or XLSX file into the gray rectangle.

4. You’ll be prompted to review your data. Afterward, you’ll be taken to a visualization screen where you can begin analyzing your data.

For more detailed information and instructions, visit our Support Page: Uploading Data into Tuva. Also, we’d love to see the data visualizations you create! Share it with us at jocelyn@tuvalabs.com.

Math Teacher Delivers Personalized Learning at Scale

View from the Classroom
Math teacher Chad Boger

Math teacher Chad Boger prepares 30 different lesson plans per week. Increasingly, he’s using Tuva to make that formidable feat more manageable.

Boger is a teacher at Fusion Academy, a private school that offers one-on-one, personalized learning. The school serves students who thrive in a non-traditional setting. Fusion Academy promotes its program as specifically advantageous for twice-exceptional students and neurodivergent students, such as those with ADD, ADHD, or anxiety.

Boger said he enjoys working with kids at Fusion because he “gravitates” toward kids with special learning needs. He added that the one-on-one nature of his work is a boon because he gets to know each student well. 

The Challenges of Condensed Class Time

That said, the one-to-one approach presents unique challenges for instructors. In a typical high school course, a student is in the classroom with their teacher for an average of 3 hours and 45 minutes per week. Fusion Academy teachers, in contrast, get just two 50-minute sessions.

Because instruction is condensed, they must be efficient with their face-to-face time. Boger is always looking for resources to help him optimize instruction time. After stumbling across Tuva this fall, Boger has used it frequently.

“Tuva is super intuitive, and it is going to save me so much time,” he said

This year, Boger’s caseload is primarily composed of juniors and seniors learning statistics. He found that teaching students to use spreadsheets was inefficient.

“It felt like a lot of wasted time when the goal was data analysis,” he explained.

This fall most of his pupils are working on descriptive statistics. Boger appreciates how easy it is to examine qualitative and quantitative data in Tuva. With the click of a few buttons, students can quickly separate the data into categories, make a box plot or histogram, and compare the spread and median of each category of data.

“Doing the same tasks with a spreadsheet,” he noted, “would have taken so much longer.”

Boger’s students use Tuva to efficiently make data displays like this one.

Never the Same Lesson Twice

Fusion Academy is not just one-to-one; it’s also personalized. Personalized learning is an approach whereby student interests and learning styles guide content and approach.

“We know that every child learns differently,” Boger said. “In a mentorship/teacher relationship, you can learn about each student’s preferences and tailor your lessons and instruction style to your learner’s needs.”

“We know that every child learns differently.”

A  preliminary study by RAND Education and the Bill and Melinda Gates Foundation suggests personalized learning can help improve outcomes for a broad range of students1. But it’s a heavy lift for educators. Unlike in a traditional classroom, instructors cannot plan a lesson and reuse it for all of the other sections of that course. Each lesson must cater to the unique interests and needs of the student. But how do you do that when you are planning 30 lessons a week?

Boger personalizes his statistics course by allowing students to select a topic they’re interested in and find a related dataset. Interests have ranged widely- from music to nutrition and book genres to Supreme Court data. Regardless of their chosen data, Boger has students upload it into Tuva for easy exploration.

Last semester, Boger uploaded the dataset that was used to make this visualization about crime rates. Users can upload up to five datasets to Tuva for free. Try it!

Passionate About Data Literacy

Teaching statistics is Boger’s job, but that’s not all it is. It’s also his mission. Boger believes that by getting kids invested in learning statistics, he is preparing them with the data literacy skills they need to thrive in the information age. 

“If I can at least expose them to these things and help them think more critically—is it coming from a reliable source? Is it someone trying to push their agenda? That’s what I am trying to get across—not just can you calculate a formula.”

  1.  Pane, John F., Elizabeth D. Steiner, Matthew D. Baird, Laura S. Hamilton, and Joseph D. Pane, How Does Personalized Learning Affect Student Achievement? Santa Monica, CA: RAND Corporation, 2017. https://www.rand.org/pubs/research_briefs/RB9994.html. ↩︎