Elementary Educator Gives All of Her Students Sugar Cubes

…and deeper learning ensues

sugar cubes

On the surface, giving 5th-graders sugar cubes seems like a terrible idea. But BJ Barrie, a math and science teacher at Euper Lane Elementary School in Fort Smith, Arkansas had her reasons. Chief among them was Barrie’s goal to help students realize they’re capable of making sense of the world on their own.

Barrie was in the midst of a unit on matter. She’d challenged her students to investigate how temperature affects solubility (hence the sugar cubes). Instead of giving the students step-by-step instructions for carrying out the experiment, she left it open-ended, giving them occasional prompts to keep them thinking as they figured out what would work on their own.

The Challenges of Doing Science in Elementary School

At the beginning of the year, Barrie’s students often asked her to explain why things happened, expecting that they’d just be told. They didn’t trust themselves to figure out the phenomenon; they didn’t know the steps to take to do so. Barrie says this insecurity likely resulted from limited exposure to hands-on science.

“Some of the early elementary teachers have not had the time to hone in on science as much as they would like to,” explained Barrie.

They’re not alone. A 2021 report from the National Academies of Science, Engineering and Medicine revealed the average elementary student spends less than 20 minutes per day on science.

Science and social studies are often squeezed out of the elementary curriculum due to time pressures from other subjects. Increasingly rigorous and frequent standardized testing in English language arts and mathematics results in these subjects being prioritized.

Some school systems attempt to address the dearth of science instructional time by having students read non-fiction texts about science during their literacy block. Passive methods of relaying content information, like reading and watching videos, fall short of teaching students science practices, however.

“Why Do You Think That Happened?”

Barrie’s goal is to graduate 5th-graders who know how to apply the science practices to make sense of phenomena on their own. Hence her mantra: “Why do you think that happened?” This short phrase both turns her students’ attention back to the investigative process and imparts her trust in their ability to figure it out. 

BJ Barrie
BJ Barrie, 5th-grade teacher

“With hands-on experiments, students directly observe phenomena and manipulate variables,” explained Barre. “They develop a deeper understanding of scientific principles by seeing how theories apply in real-world situations.”

Data plays a key role in helping Barrie’s students generate claims in response to her oft-asked question, “Why do you think that happened?” When no one is giving them the “answer”, they need to turn to the data to find out what might be going on. (Ahem- sort of like professional scientists do.)

For example, during the sugar cube experiment, there were three people who dissolved the cube in less than a minute. Barrie encouraged her students to look closely at the class-wide data. What was the difference?

Tuva Jr. Helps Elementary Students Make Sense of Their Data

When sensemaking happens through hands-on experimentation, students must be equipped with the skills necessary to interpret and analyze the resultant data. Like other skills, data literacy must be taught. In Barrie’s classroom, students have built up these data literacy muscles using Tuva Jr., Tuva’s new program designed for kids in grades 3-5. Barrie participated in the Tuva Jr. pilot program earlier this school year and has been a regular user since.

Barrie said she loves Tuva Jr. because “students not only learn data analysis but also discover the power of curiosity and critical thinking.”

Barrie said the playful nature of the Tuva Jr. tools appeals to her students. Like Tuva, the graphing interface uses interactive drag-and-drop technology, making it easy for students to choose which attributes (variables) they want to explore. Students can also choose from a menu of graph types. These are our tried and trusted features that place students in the driver’s seat in a way that can’t happen with static data tables and graphs. 

But Tuva Jr. also has unique features. It opens in “Play View” where each case is represented by a playing card, and when users switch to the “Plot View” the data points retain a playful shape, such as that of a football or a koala. Additionally, to prevent overwhelming younger students, the toolbar is simplified and the overall number of attributes and cases is smaller. 

Relevance is another strong suit of Tuva Jr., according to Barrie.

“I like how Tuva has content about different things that would be interesting to my students,” said Barrie.

So far, her kids’ favorite Tuva Jr. activities include Comparing Candy and Beach Cleanup. While the candy-themed activity was a fan favorite for obvious reasons, the litter dataset prompted their intellectual curiosity. Knowing that this data was real deepened the conversation. Beach Cleanup launched a wide-ranging discussion about what is considered junk, how certain items could have found their way to the beach, and how plastic never really goes away. Barrie’s students were surprised by how much junk was found on the beach and were inspired to think of strategies for preventing plastic waste that can be carried by wind or water to the water’s edge.

The Case for Giving 10-Year-Olds Sugar Cubes

Our world is a complex place. There’s an unspeakable complexity in nature- in the structure of a glucose molecule or in the creation of a cumulus cloud, for example. And there’s immense complexity in the world’s latest problems, like garbage islands and nanoplastic pollution. When our kids are all grown up and tackling their own generation’s conundrums, they’ll need to ask themselves, “Why do we think that happened?”,  and they’ll need to have the capability to gather and analyze data to help them get closer to the answer. That capacity does not just suddenly emerge at a certain age; it has to be built up gradually.

While the potential short-term consequences of giving a room full of 5th-graders sugar cubes loom large, the consequences of not entrusting them with decision-making power while we still have the opportunity to nurture and direct those powers is far greater. BJ Barrie has the long game in mind.

“Why are we learning this?”

Utah Teacher Macy Cook Is Ready With an Answer

Picture of Macy Cook

Macy Cook is a 6th-grade teacher in Salt Lake City, Utah. Her self-contained classroom at Uintah Elementary School houses 28 11- and 12-year-olds. Like many students on the cusp of adolescence, Cook’s pupils are beginning to chafe at authority and to question the requirements adults place upon them. They want to know, “Why are we learning this?” 

Cook doesn’t believe it’s a snarky question, but rather a valid query that deserves a serious response. She vividly recalls hating it when teachers responded, “Because I said so,” and she’s determined to reply thoughtfully when her own students wonder about the importance of a particular concept.

“I want everything to have a reason,” she said. “I want them to know where it will show up in their life, so it has purpose.”  

Purpose and Application – A Quick Snapshot of the Research

Cook’s educational philosophy aligns well with national efforts to improve science education and is backed by a substantial body of research. One of the major principles of The Framework for K-12 Science Education is  Connecting to Students’ Interests and Experiences.

“In order for students to develop a sustained attraction to science and for them to appreciate the many ways in which it is pertinent to their daily lives, classroom learning experiences in science need to connect with their own interests and experiences.” – The Framework for K-12 Science Education

Multiple studies indicate lack of purpose hinders STEM learning. Interventions that emphasize the utility of science improve outcomes and persistence, particularly for historically underrepresented students. Practitioners have shown when students apply science, such as when they participate in citizen science, it can enhance motivation, interest, knowledge, and communication skills. 

Tuva Helps Contextualize Science

Cook was introduced to Tuva this winter when she participated in a professional development series hosted by the Salt Lake City School District and led by Tuva instructional specialists. Cook quickly became a fan and has been frequently using Tuva with her students.

“Tuva has been really amazing for them to see the real-world application of the topics they’ve learned,” said Cook.

Tuva’s Content Library includes 400 curated, real-world datasets and more than 450 applied math and science lessons based on them, which makes connecting to the world outside of the classroom easy.

Recently, Cook’s students have been studying atomic chemistry. Cook said it is hard for sixth graders to wrap their heads around the concept that elements make up molecules and molecules make up everything on Earth. 

Cook used Tuva’s Nature of the Elements activity to help her kids grasp the importance of elements.

Tuva’s lesson, Introduction: The Nature of Elements, intentionally pointed out the relevance. One question prompted students to complete the sentence, “A few elements that are important to me are…” Cook expanded the question to include, “What elements do you recognize?” Within moments, students were calling across the room as they encountered familiar terms. “Aluminum- like in aluminum foil.” “Neon signs.” “Oxygen!” “We use chlorine in our pool.”

Understanding the elements’ ubiquity gave purpose to the ensuing exercise. Exploring the trends in the periodic table was transformed from something abstract to something intimately connected to their daily lives.

Another Answer to “Why?’

When Cook was in 6th grade, her math teacher’s response to, “Why?” was, “You are not going to always have a calculator in your back pocket.” Flash forward 20-odd years- Cook grins at me through the Zoom screen and waggles her cell phone. (Psyche!) 

Technology has and will continue to evolve rapidly. Cook predicts our rapidly changing world will require today’s students to have stronger data literacy skills. 

“The future of what the kids are going to do is probably going to be computer-based, so learning how to manipulate and read data is really important. Even if it’s not something the average adult does now, it will be.” 

Experts agree. Harvard Data Science Review estimated there will be more than 150,000 U.S. job openings requiring data analysis skills by 2025. The U.S. Bureau of Labor Statistics reports higher-than-average job growth in data-related careers by 2032. Graduates with strong data skills will have an advantage, not only in data science but also in diverse fields such as agriculture and real estate that increasingly rely on data.

What’s Obvious to Us, Isn’t to Them

The reasons for providing a rigorous education in science and data literacy are obvious to adults. Not so for kids. Cook’s intentional focus on purpose and application, combined with the baked-in relevance of real-world data, ensures that her students are never left wondering, “Why am I Iearning this?”

How Can Tuva Support the Shifts in the California Math Framework?

In July, California passed an updated Mathematics Curriculum Framework, which outlined major shifts in how the state expects schools and districts to approach math instruction. Our math team is excited about the new emphases of the framework and how Tuva is uniquely positioned to support them.

“We look forward to building on our ongoing substantial work with California educators to dedicatedly support the state’s math teachers, schools, and districts as they look to adapt and update their existing math instruction to teach data literacy and data science to their students,” says our co-founder, Harshil Parikh.

We’ve outlined below some of the major shifts and additions, and highlighted ways our work can support California math educators to be prepared for what’s to come.

Data Literacy and Data Science Emphasized

The California math framework is clear: data literacy and data science should be emphasized throughout the K-12 math ecosystem. In fact, the framework dedicates an entire chapter (Chapter 5) to Mathematical Foundations for Data Science.  

“Students should have equitable access to data literacy and introductory data science at the K–12 level to facilitate equitable participation in a data-driven world as adults.”  (Chapter 5, Page 5)

The chapter lays out how data science fits into each grade band, as well as thematic topics within the California CCSS-M that directly support data science. Topics like: understanding variability, the data collection process, and comparing and finding associations between variables. 

As an organization founded on the belief that data literacy skills are crucial for students’ success in school and beyond, we’re excited to see California join a growing number of states in recognizing the importance of data literacy and data science throughout the K-12 pipeline. 

We also know that teaching data literacy skills can be daunting. To support teachers in understanding where their students should be in their data literacy skill-progression across grade bands, we’ve developed a comprehensive data literacy framework that outlines the major skill areas students should progress through as they deepen their data literacy skills.

Data is a Vehicle Through Which Math Content is Applied

In this iteration of the framework, California has introduced Content Connections, which “embody the understandings, skills, and dispositions expected of high school graduates (Chapter 1, Page 22).”

You can think of these content connections as the vehicle through which students are applying their understanding of the standards.  So, for example, if a sixth-grade student is learning about fraction relationships, one of the ways they may apply their knowledge is by reasoning with data.

At Tuva, this is already how we approach the development of math content. We see data as a way for students to both learn and apply their mathematical knowledge, while hopefully engaging with a context that is fun and relatable. 

For example, in our 6th-grade activity Analyzing Dinosaurs with Fractions and Percentages, students use their understanding of part-to-whole relationships to analyze an interesting dataset on 28 commonly known dinosaurs, and ultimately make claims about the types of dinosaurs that existed across geological periods.

Moving From Clusters to Big Ideas

While the framework didn’t change the actual language of the standards (California continues to use the California Common Core State Standards for Mathematics), it did outline a reorganization of the standards around “Big Ideas” rather than the previously used “Clusters”. 

Like most states that use the Common Core, California previously identified major grade-level clusters, which served as a way for educators and curriculum providers to identify the most important standards within a course. Those same priority standards are still identified via the size of each concept bubble in the course’s big ideas map (shown below).

While the big ideas maps for each grade level may at first look intimidating, they serve a pedagogical purpose: to help both learners and teachers of mathematics come to view math as a series of interconnected concepts that spiral across grade levels.

“Standards and textbooks tend to divide the subject into smaller topics, but it is important for teachers and students at each grade level to think about the big mathematical ideas and the connections between them .” (Chapter 2, Page 12)

Here at Tuva, we recently reorganized our math content library to focus on the big ideas of each grade level – specifically those which have strong potential for data applications. 

The design of our new math library is intended to help teachers see the connections between content standards in their course and find rigorous data investigations that can support students’ conceptual understanding of the topic. Our content library buckets are intended to encompass multiple standards and will naturally have some conceptual overlap. Learn more about our reorganization in our recent blog post.  

Student Engagement is Coequal With Content Mastery

The California framework makes it clear that student engagement in math is just as important as student mastery of content standards:

“When students are engaged in meaningful, investigative experiences, they can come to view mathematics, and their own relationship to mathematics, far more positively. By contrast, when students sit in rows watching a teacher demonstrate methods before reproducing them in short exercise questions unconnected to real data or situations, the result can be mathematical disinterest or the perpetuation of the common perspective that mathematics is merely a sterile set of rules.” (Chapter 2, Page 9)

If you’re familiar with Tuva and our vision for math and science education, this sentiment will feel very similar to our vision statement:

“Tuva envisions a world where every student experiences the joy of learning math and science through real-world contexts. We imagine a future in which all students possess data literacy and use it to contribute positively to society.” 

And this isn’t just an empty vision statement; our teachers are already exemplifying the possibilities of teaching mathematics in this way.  Read our previous posts about math teachers like Chad Boger and Annie Pettit who are making the learning personal and relevant for their students using Tuva tools and datasets.

Get Started Using Data in Your Math Instruction

If you’re looking for a place to get started integrating data into your math instruction, we have a few suggestions.  This free middle school lesson on choosing the correct measure of center hooks students through an exploration of popular breakfast cereals and their nutritional content. For high school applications, try out this free lesson exploring the exponential growth of the cost of Super Bowl commercials over the years.

HS Junior Melds Stats With Civics to Gain Insights into Infant Mortality

View from the Classroom

Data Crosses Disciplines, Yields Powerful Learning

Up until the mid-1800s, children had a 50% chance of dying before age 15. By 1950 the childhood mortality rate was closer to 25%. Today, it sits at 4.3% globally. Childhood mortality rates have experienced a steep, steady decline across the world.

So, when Kate Harrison, a high school junior in Charlotte, North Carolina, was sifting through data about infant mortality rates in different countries, Syria’s data gave her pause.

“Syria in particular has these two spikes, and I got really interested, thinking, what was happening at the time?” she said.

Thus was born a semester-long investigation.

Data Transcends Disciplinary Boundaries, Deepens Learning

Harrison was enrolled in an honors statistics class at Fusion Academy where she’d been charged with undertaking an interdisciplinary project. She’d decided to apply statistics to explore history, but identifying a focus took time.

Her original idea was a bit nebulous, but it centered around trends in warfare over time. To clarify her question, she began exploring data. In the process, she stumbled upon the Syrian infant mortality data. That’s when nuanced and intriguing questions pushed their way to the forefront.

Harrison immediately noted an association between the timing of armed conflicts in Syria and the spikes in infant deaths. She noticed that after the start of the Islamist uprising in Syria in 1981, infant mortality increased by 4.24%. The nation suffered an even more drastic 52.7% increase in the infant mortality rate from 2010-2014 at the beginning of the Syrian Civil War.

Harrison discovered that in both instances there had been a concurrent rise in overall mortality. However, she knew that infants didn’t fight in the wars, so what were the underlying connections? Harris worked with her faculty advisors, social studies teacher Rick Fera and statistics teacher Chad Boger, to brainstorm variables that may have influenced infant mortality. 

Variables she explored included birth rates, governmental regimes, international aid, gross domestic product, basic sanitation, basic healthcare access, and vaccination rates.  She compiled data about these factors from Our World in Data and the World Health Organization and imported it into Tuva for analysis. Harrison said identifying changes and interpreting patterns was easier for her when she used Tuva.

“You really just can’t tell using a table because there’s so many numbers and so many different data points,” she said. “And so getting to put that all into one tool and really visualize it without having to go through the hassle of actually plotting out each point, and probably doing something wrong, was very helpful.”

Surprises in the Data

In some cases, Harrison was surprised at the lack of correlation between variables. She had assumed, for example, that GDP would have a large impact on infant mortality rates, but the data did not show a correlation. In fact, Syria experienced a financial crisis a few years before the civil war, but the infant death rate did not experience a resultant increase.

What did show a correlation with infant mortality – vaccination rates. In the early 1980s, Syria engaged in a national immunization campaign, and infant mortality rates showed a steep decline. However, when immunization rates faltered during the civil war and uprising, infant mortality spiked again. 

Using Data to Inform Priorities in War-Torn Nations

“This data suggests that immunization programs and keeping healthcare systems intact should be a high priority in war-torn nations,” Harrison concluded. “Several relief programs are focusing on integrated management of childhood illnesses, which includes improving case management strategies of healthcare providers, healthcare systems, and families.” 

Boger, Harrison’s teacher, applauded her work, saying she’d exceeded his high expectations. This spring, Harrison will have another chance to explore her passions with a civics math class she’s enrolled in.

“I personally see data as the backbone of any social change.”

She is also beginning to think about life after high school. She’s begun exploring four-year colleges and aspires to pursue degrees in political and environmental sciences. 

“I personally see data as the backbone of any social change,” said Harrison. “Being able to visualize and look at data clearly is essential to taking meaningful action and maximizing your impact. I see this, especially with environmental justice and climate change. Data will help determine which areas are most in need of relief and which areas will face the most impact. I hope to be able to focus on data-driven environmental policy work in the future.”  

Inspired? Explore Data You’re Passionate About
  1. Find data that sparks your curiosity.
  2. Click “Upload Dataset” from your Tuva dashboard or type tuvalabs.com/upload in your web browser’s URL bar.

3. You may now import a dataset from your computer, Google Drive, or One Drive, or by dragging and dropping your CSV, XLS, or XLSX file into the gray rectangle.

4. You’ll be prompted to review your data. Afterward, you’ll be taken to a visualization screen where you can begin analyzing your data.

For more detailed information and instructions, visit our Support Page: Uploading Data into Tuva. Also, we’d love to see the data visualizations you create! Share it with us at jocelyn@tuvalabs.com.

Tuva Redoubles Commitment to Integrating Data Literacy Across the Math Curriculum

Math Content Library Revamp First Step in a Larger Effort to Support Teachers

Calls to incorporate data literacy in K-12 education are gaining momentum across the country. States like Virginia, Utah, Oregon, and California are taking major steps to create updated state standards or dedicated high school pathways.

Some of the states who’ve recently incorporated data literacy into their standards.

As a company dedicated to building a future in which all students possess data literacy and use it to contribute positively to society, Tuva applauds these changes. We also recognize implementing change takes work. Teachers, schools, and districts deserve support as they work to integrate data literacy across their math curriculum. To help maintain the momentum, Tuva is placing renewed energy on its resources for mathematics teachers.

As part of this effort, we recently revamped our math content library to make it easier for math teachers to locate lessons that will help them weave more data into their curriculum. The library has been reorganized to better reflect what teachers are teaching, with separate pages for each course.

“We’re hoping these changes will enable our math teachers to spend less time searching and more time teaching,” explained Tuva Math Educational Specialist  Colleen McEnearney.

The content in the library has not changed; the navigation system has. Teachers are prompted to select a course: 6th-grade math, 7th-grade math, 8th-grade math, algebra 1, algebra 2, or statistics/AP statistics. 

Each course page is divided into the big ideas of that course. These big idea buckets represent areas within each course where real-world data can greatly enhance students’ understanding of the content. For example, the 8th-grade math page includes the big ideas: interpreting scatter plots and associations; informal linear models; two-way tables; and formal linear models.

All lessons connected to a big idea are clustered on the page, so teachers can scroll through them all at once. 

Previously, teachers had the option to sort lessons by course or concept, but this posed challenges. When filtering by course, they would see all lessons related to the course’s standards, requiring manual searching for specific concepts. Searching by concept, while possible, often resulted in diverse grade-level materials, necessitating manual sifting for grade-appropriate content within the old organizational system.

Tuva’s math content library revamp eliminates these time-consuming issues and makes finding the just-right lesson much more efficient. Explore our newly remodeled math content library